博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
OpenCV 3.0之后三年半,OpenCV 4.0出炉
阅读量:6411 次
发布时间:2019-06-23

本文共 2390 字,大约阅读时间需要 7 分钟。

机器之心编辑,参与:机器之心编辑部。

2015 年 6 月,OpenCV 3.0 发布。时隔三年半,OpenCV 4.0 终于发布。至此,OpenCV 已经走过了近 18 个年头。

OpenCV 是英特尔开源的跨平台计算机视觉库。也就是说,它是一套包含从图像预处理到预训练模型调用等大量视觉 API 的库,并可以处理图像识别、目标检测、图像分割和行人再识别等主流视觉任务。OpenCV 最显著的特点是它提供了整套流程的工具,因此我们根本不需要了解各个模型的原理就能一个个 API 构建视觉任务。

OpenCV 使用 BSD 许可证,因此对研究和商业用途均免费。它具备 C++、Python 和 Java 接口,支持 Windows、Linux、Mac OS、iOS 和 Android 系统。OpenCV 旨在提高计算效率,专注于实时应用。它使用优化的 C/C++写成,能够利用多核处理。

此外,在 OpenCL 的加持下,OpenCV 可以利用底层异构计算平台的硬件加速。它的 GitHub 页面中有一个「open_model_zoo」资源库,包含了大量的计算机视觉预训练模型,并提供下载方法,有助于加速开发和产品部署过程。OpenCV 应用广泛,目前在用户社区有 4.7 万用户,下载量约为 1400 万。

可以说 OpenCV 是 CV 领域开发者与研究者的必备工具包,Mask-RCNN 等很多开源项目都依赖于这个工具包。现在距离 3.0 版本的发布已经过去三年多,近日 OpenCV 4.0 final 版发布,它进一步完善了核心接口,并添加了二维码检测器、ONNX 转换格式等新特点。

重要更新:

  • OpenCV 4.0 现在是一个 C++11 库,要求 C++11 兼容的编译器。所需的 CMake 至少是 3.5.1 版本。

  • 移除 OpenCV 1.x 中的大量 C API。

  • core 模块中的 Persistence(用于存储和加载 XML、YAML 或 JSON 格式的结构化数据)可以完全使用 C++ 来重新实现,因此这里的 C API 也被移除。

  • 添加了新模块 G-API,它可作为基于图的高效图像处理流程。

  • dnn 模块包括实验用 Vulkan 后端,且支持 ONNX 格式的网络。

  • 实现了流行的 Kinect Fusion 算法,且为 CPU 和 GPU (OpenCL) 进行优化。

  • objdetect 模块中添加了二维码检测器和解码器。

  • 将高效、高质量的 DIS dense optical flow 算法从 opencv_contrib 移到 video 模块。

此外,OpenCV 4.0 支持 Mask-RCNN 模型,性能也有所提升,图像处理操作可实现 15%-30% 的速度提升。

OpenCV 与深度学习

在 OpenCV 4.0 的更新中,它强化了 DNN 模块并添加支持 ONNX 交换格式的神经网络,这一切都表明 OpenCV 非常注重其与深度学习之间的关系。其实自从 OpenCV 3.1 以来,它就包含了能实现深度网络前向传播的 DNN 模块,这些深度网络一般都由 Caffe 等深度学习框架预训练而成。在 OpenCV 3.3 中,DNN 模块从 opencv_contrib 移到了核心代码库,并取得了显著的加速。

更重要的是除了 libprotobuf 以外,OpenCV 中的 DNN 模块不包含额外的依赖项,而且现在 libprotobuf 已经包含到了 OpenCV 中。以下是目前 OpenCV 支持的一些框架:

  • Caffe

  • TensorFlow

  • Torch

  • Darknet

  • ONNX 交换格式的模型

目前 OpenCV 所支持的深度学习层级函数:

  • AbsVal

  • AveragePooling

  • BatchNormalization

  • Concatenation

  • Convolution (including dilated convolution)

  • Crop

  • Deconvolution, a.k.a. transposed convolution or full convolution

  • DetectionOutput (SSD-specific layer)

  • Dropout

  • Eltwise (+, *, max)

  • Flatten

  • FullyConnected

  • LRN

  • LSTM

  • MaxPooling

  • MaxUnpooling

  • MVN

  • NormalizeBBox (SSD-specific layer)

  • Padding

  • Permute

  • Power

  • PReLU (including ChannelPReLU with channel-specific slopes)

  • PriorBox (SSD-specific layer)

  • ReLU

  • RNN

  • Scale

  • Shift

  • Sigmoid

  • Slice

  • Softmax

  • Split

  • TanH

对于对性能要求很高的神经网络层,这个 DNN 模块包括 SSE、AVX、AVX2 和 NEON 等底层加速库,且还有持续优化中的 Halide 后端。

你可以在这里找到最新的基准结果:

单张图像前向传播的中位最佳时间(以毫秒为单位,基于 CPU 在 float32 上计算)。

以下网络已经经过测试并证实可行:

  • AlexNet

  • GoogLeNet v1 (也称为 Inception-5h)

  • ResNet-34/50/...

  • SqueezeNet v1.1

  • VGG-based FCN(语义分割网络)

  • ENet(轻量级语义分割网络)

  • VGG-based SSD(目标检测网络)

  • MobileNet-based SSD(轻量级目标检测网络)

OpenCV 4.0 发布地址:

转载地址:http://uzkra.baihongyu.com/

你可能感兴趣的文章
laravel input值必须不等于0_框架不提供,动手造一个:Laravel表单验证自定义用法...
查看>>
cad填充图案乱理石_太快了吧!原来大神是这样用CAD图案填充的
查看>>
activator.createinstance 需要垃圾回收么_在垃圾回收器中有哪几种判断是否需要被回收的方法...
查看>>
rocketmq 消息指定_RocketMQ入坑系列(一)角色介绍及基本使用
查看>>
redis zset转set 反序列化失败_掌握好Redis的数据类型,面试心里有底了
查看>>
p图软件pⅰc_娱乐圈最塑料的夫妻,P图永远只P自己,太精彩了吧!
查看>>
jenkins 手动执行_Jenkins 入门
查看>>
怎么判断冠词用a还是an_葡语干货 | 葡萄牙语冠词用法整理大全
查看>>
js传参不是数字_JS的Reflect学习和应用
查看>>
三个不等_数学一轮复习05,从函数观点看方程与不等式,记住口诀与联系
查看>>
卡尺测量的最小范围_汽车维修工具-测量用具
查看>>
网优5g前景_5G网络优化师前景怎么样?
查看>>
竞态条件的赋值_[译] part25: golang Mutex互斥锁
查看>>
delmatch oracle_完美完全卸载(清除)oracle数据库的方式(方法)
查看>>
pyqt 滚动条 美化_Pyqt5 关于流式布局和滚动条的综合使用示例代码
查看>>
51单机片 编译hex_单片机爬坑记-05-编译环境(完)
查看>>
java 正则表达式 img_Java正则表达式获得html字符串里的<img src=""/> 中的url列表
查看>>
java 文件crc校验_一个获取文件crc32校验码的简洁的java类 | 学步园
查看>>
java flatmapfunction_Java8 Stream flatmap中间操作用法解析
查看>>
java rmi spring 4.0_Java Spring RMI一些尝试
查看>>